
Enhancing Automata Learning with Statistical Machine Learning:
A Network Security Case Study

Negin Ayoughi, Shiva Nejati,

Mehrdad Sabetzadeh

University of Ottawa, Canada

{negin.ayoughi,snejati,m.sabetzadeh}@uottawa.ca

Patricio Saavedra

RabbitRun Technologies Inc.

Toronto, Ontario, Canada

pat@rabbit.run

ABSTRACT

Intrusion detection systems are crucial for network security. Verifi-

cation of these systems is complicated by various factors, includ-

ing the heterogeneity of network platforms and the continuously

changing landscape of cyber threats. In this paper, we use automata

learning to derive state machines from network-traffic data with

the objective of supporting behavioural verification of intrusion

detection systems. The most innovative aspect of our work is ad-

dressing the inability to directly apply existing automata learning

techniques to network-traffic data due to the numeric nature of

such data. Specifically, we use interpretable machine learning (ML)

to partition numeric ranges into intervals that strongly correlate

with a system’s decisions regarding intrusion detection. These in-

tervals are subsequently used to abstract numeric ranges before

automata learning. We apply our ML-enhanced automata learn-

ing approach to a commercial network intrusion detection system

developed by our industry partner, RabbitRun Technologies. Our ap-

proach results in an average 67.5% reduction in the number of states

and transitions of the learned state machines, while achieving an

average 28% improvement in accuracy compared to using expertise-

based numeric data abstraction. Furthermore, the resulting state

machines help practitioners in verifying system-level security re-

quirements and exploring previously unknown system behaviours

through model checking and temporal query checking. We make

our implementation and experimental data available online.

ACM Reference Format:

Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh and Patricio Saavedra.

2024. Enhancing Automata Learning with Statistical Machine Learning:

A Network Security Case Study. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

Our work stems from the needs of our industry partner, Rabbi-

tRun Technologies (RRT for short). RRT develops affordable net-

work routers for small office and home office (SOHO) users – a

customer base that has grown in importance and size during and

post-pandemic. Network routers are complex devices that handle

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

various protocols and services. RRT’s router comes with a propri-

etary network intrusion detection system that monitors network

traffic for suspicious activities to detect various types of attacks.

Understanding and characterizing system-level behaviours of

a complex network intrusion detection system poses a challenge

due to the heterogeneity of network platforms and the constantly

evolving landscape of cyber threats. Developing such understand-

ing and being able to precisely capture system-level behaviours are

nonetheless paramount for our industry partner for several reasons,

including (a) providing better support resources and guidelines for

network administrators and operators, (b) improving the identi-

fication of security vulnerabilities, such as unexpected responses

to certain types of network traffic, and (c) having an analyzable

specification against which to test new router software versions.

To facilitate the above, we investigate the feasibility and effective-
ness of automatically learning system-level behavioural models, more
specifically system-level automata, to capture the behaviours of RRT’s
network intrusion detection system.

Automata learning derives state machines in a black-box man-

ner [2, 13, 20, 21, 30]. This can be done in either an active or passive

mode. Active learning involves algorithms interacting with the

system under learning to generate data, whereas passive learning

uses existing datasets like log files. Active automata learning has

been used in real-world scenarios, including network protocols

like BLE [24], MQTT [28], and TCP [11], where a clearly defined

interface with the system under learning is available. Network in-

trusion detection systems, however, analyze the continuous and

numeric properties of network-traffic flows over time to detect

security attacks, such as denial of service [33]. That is, their in-

puts and outputs consist of time-series data involving numerical

and continuous values. These systems cannot support an iterative

query-and-response closed-loop, which is crucial for active learning.

Passive learning, on the other hand, is a more suitable strategy for

learning the behaviours of network intrusion systems. Nonetheless,

passive learning cannot directly handle numeric time-series data.

In this paper, we propose theMachinE Learning-enhanced passive
Automata learning approach (MELA) to derive state machines for

network intrusion detection systems with numeric time-series in-

puts and outputs. Our approach generates network flows simulating

both normal and attack scenarios, and captures the system outputs.

We transform the time-series data obtained from the network flows

and system outputs into a set of traces. This transformation involves

partitioning raw, numerical ranges into a set of intervals. We use

decision trees to optimize the correlation of the resulting intervals

with a system’s decisions regarding intrusion detection.We then use

passive automata learning [14] to derive state machines that capture

the behaviours of RRT’s network intrusion detection system.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh and Patricio Saavedra

(a) Deployment of RRTRouter in the real-world

(b) Our testbed simulating the real-world deployment of RRTRouter

Figure 1: Our case study system: (a) Deployment of our in-

dustry partner’s router (RRTRouter) in the real-world, and

(b) our testbed simulating the real-world deployment.

Contributions. Our paper demonstrates the effective applica-

tion of passive automata learning for building accurate and practi-

cally useful state machines for systems with numerical, time-series

inputs and outputs. The key idea behind our approach is using

decision-tree learners to abstract the numeric data in traces so as to

improve the accuracy and precision of the learned state machines.

We evaluate our approach, MELA, using an industrial network intru-

sion detection system developed by our partner, RRT. We compare

the state machines learned using MELA with those developed using

two baselines: one employing passive automata learning without

data abstraction and the other using automata learning combined

with expertise-based data abstraction. Our results indicate that,

when given the same set of time-series data, MELA generates state

machines with an average of 67.5% fewer transitions and states,

while, on average, achieving 28% higher accuracy compared to the

baselines. That is, combining automata learningwith ourML-driven

data abstraction leads to more concise state machines that can more

accurately represent the behaviours of the system under learning.

Further, we show how, using temporal model checking [9] and

query checking [8], the learned state machines help our industry

partner with verifying system-level requirements and identifying

previously unknown system-level behaviours.

2 INTRUSION DETECTION CASE STUDY

Figure 1a illustrates the deployment of an RRT network router,

which enables local users to connect to the Internet and external

networks. The router is equipped with an intrusion detection sys-

tem to identify denial of service (DoS) and distributed denial of

service (DDoS) attacks originating from external networks. DoS

attacks flood their target with excessive traffic from a single source,

whereas DDoS attacks employ multiple sources to perform a more

extensive attack [33]. RRT’s intrusion detection system monitors

the incoming traffic to the router for identifying attacks. If an attack

is detected, the system moves to an alert state, triggering actions

to block unauthorized traffic. We refer to an RRT router (together

with the intrusion detection system running on it) as RRTRouter.
To test RRTRouter with different traffic flows, in collaboration

with RRT, we have designed and implemented a testbed shown in

Figure 1b. The testbed enables the simulation of a varying number of

external users, located to the right of RRTRouter, sending network

Local User

External User
type: External User Type [0..T]

External User Type
Normal
DoS Attacker
DDoS Attacker

«enumeration»
Network Flow

protocol: Protocol Name [0..T]
port: Numeric [0..T]
packet_size: Numeric [0..T]

System State
type: System State Type [0..T]

System State Type
Safe
Warning
Alert
Tending Warning
Tending Alert

«enumeration»

flows to▲

*

1

RRTRouter
num_flows: Numeric [0..T]
num_unreplied: Numeric [0..T]

<latexit sha1_base64="w6B/JHiUcozH3OJwTCWx9laXr1A=">AAACd3icdVFNb9QwEPWmLZS0wBZucCAiVbUgFCVhtx+3SmgleisS21Zar1aOM1msJnZkO/3AstRfwxX+Dj+FG852i5QDcxo9z3vz5jmrS6Z0HP/ueWvrG48ebz7xt7afPnve33lxpkQjKUyoKIW8yIiCknGYaKZLuKglkCor4Ty7/NS+n1+BVEzwr/q2hllFFpwVjBLtoHn/1e4Ah/gD1nDj2KbhEtxayO273Xk/jKN4f5SkH4M4Gh4dHcZD16SjdJgcBEkULytEqzqd7/TGOBe0qYBrWhKlplTwAiRwCjNzMh6PtSTc+rhRUBN6SRZglhd0oGmdF87NzCwkqb8xetMlNLLsAkRKcmt9H3O4pqKqCM8NhhJaF3aazIzBhRCaCw2KfYflpaowYWKt7ZIqxllL/MfiumWYkTWx9YMAu5iB6hbvqnRllJsRNaNLGXylnFF4b6LUCeOaSMwF47kzZx5Cx1mhQDJQwb2cC/4h3eD/zVkaJfvR6EsaHg9XX7CJXqO3aIASdICO0Wd0iiaIojv0A/1Ev3p/vDfenje4H/V6K85L1Ckv+Qu8YcQ/</latexit>

(# unreplied)

<latexit sha1_base64="eyj4Q+VoSLs8LFi3WocJTE+K7KQ=">AAACc3icdZFPT9swGMbd7B8LbCtD2oVLRHpg0xYlWQvjhjRV2m4grYBUV5XjvuksHDuyXf7M+MvsOr4QH2T3OaUg5bD3ZD1+f48ePy5qzrRJ07tO8OTps+cv1l6G6xuvXr/pbr490XKhKIyo5FKdFUQDZwJGhhkOZ7UCUhUcTovzr8396QUozaT4Ya5rmFRkLljJKDFemnbf9XZxjD9iA1eetiWXl9q97027cZqke4Ms/xylSf/g4Eva94d8kPez/ShL0uXEaDVH083OEM8kXVQgDOVE6zGVogQFgsLEfh8Oh0YR4UK80FATek7mYJfpW9K4npU+ycTOFal/MnrVBhaKtwWiFLl2YYgFXFJZVUTMLAYOTQo3zibW4lJKI6QBzX7B8pW6tHHmnGtDFROsAR8pYRrCDpxNXRhF2FcM1DR626Vto/2OrBld2uAL7YPCB5vk3hjXRGEhmZj5cPahcFyUGhQDHd3b+eIf2o3+fzjJk2wvGRzn8WF/9QVraBvtoF2UoX10iL6hIzRCFN2g3+gPuu38DbaDnaB3vxp0VswWak3w6R/VHcJ6</latexit>

(# flows)

*

1
manages▲

generates

▲

1..*

1

outputs▲

1

1

input output system
boundary

Protocol Name
UDP
TCP
…

«enumeration»

Figure 2: A conceptual model for our testbed.

flows to the local users, located to the left of RRTRouter. As we

discuss in Section 4.1, the testbed uses a tool to simultaneously

generate normal network flows alongside DoS and DDoS attacks

from external users. It further uses a penetration testing framework

to simulate vulnerabilities in local users. The network flows from

external users pass through RRTRouter, allowing it to collect data,

analyze this data, and identify DoS / DDoS attacks.

A conceptual model that represents the entities of our testbed,

including its inputs and outputs – shaded green and red respec-

tively – is provided in Figure 2. External users are either normal

users or attackers (DoS / DDoS). External users generate network

flows, which then go to local users. The inputs to RRTRouter are:

(a) the attributes of individual network flows, i.e., protocol, port,
and packet_size, and (b) aggregated flow attributes computed

for all the flows passing through RRTRouter, i.e., num_flows and
num_unreplied. Here, protocol specifies the communication pro-

tocol, e.g., TCP or UDP; port specifies the destination port number

for the incoming traffic; packet_size specifies the size of incom-

ing packets; num_flows denotes the number of all flows passing

through RRTRouter; and num_unreplied indicates the number of

flows that are not acknowledged by local users.

RRTRouter updates its state in response to the network flows

passing through it, selecting one of the following: Safe, indicating
no signs of an attack; Warning indicating the presence of unusual
but not necessarily harmful network flows; and Alert indicating
the detection of potentially harmful or malicious traffic. In addition,

there are the Tending Warning and Tending Alert states used

when RRTRouter is inclined to transition to Warning or Alert,
respectively, but has not conclusively committed to escalation. As

Figure 2 shows, the inputs and outputs of RRTRouter are time-series

vectors. A time-series vector is a function 𝑣 : [0..𝑇] → 𝐷 , where

the interval [0..𝑇] is a time domain with duration 𝑇 , and 𝐷 is the

range of the time series.

In a real-world deployment, RRTRouter has access to all the

inputs shown in Figure 2, i.e., the attributes highlighted green,

except for the type of the external users: in such a deployment,

one does not know whether the flows are attack flows or normal

flows. Therefore, based on raw data from a real-world deployment,

one cannot determine whether RRTRouter accurately identifies

attacks and responds appropriately. To verify system behaviours,

we need to associate time-series vectors from network flows with

Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study Conference’17, July 2017, Washington, DC, USA

Safe Warning Alert

(Normal	&	Low	Flow)	|
(DDoS	&	Low	Flow)

DDoS	&	Med	Flow

Normal	&	Low	Flow

(Normal	&	Med	Flow)	|
(DDoS	&	Med	Flow)

DDoS	&	High	Flow

DDoS	&	Med	Flow

DDoS	&	High	Flow

Figure 3: A simplified example of a state machine learned

for RRTRouter by our approach (MELA).

the user types generating these flows. Our testbed establishes this

association, enabling the learning of state machines that reliably

link system behaviours to the external user types – attackers or

normal users – generating input flows.

In the next section, we present MELA, our approach for deriving

state machines from time-series data. A simplified example state

machine generated for RRTRouter using MELA is depicted in Fig-

ure 3. This state machine shows how RRTRouter changes state in

response to receiving a Low, Med(ium) or High number of flows

from normal users or DDoS attackers. MELA uses a systematic pro-

cess, guided by machine learning, to derive effective abstractions

from numeric time-series data obtained from RRTRouter’s inputs

and outputs. In Sections 4 and 6, we discuss how these abstrac-

tions not only contribute to the conciseness and accuracy of the

learned state machines, but also aid RRT engineers in verifying

the system-level requirements of RRTRouter and discovering un-

known behaviours such as those related to the Tending Warning
and Tending Alert states (not included in Figure 3 due to space).

In particular, our state machines enable engineers to (a) identify

the ranges for the number of normal and attack flows and (b) refine

the requirements of RRTRouter regarding how it should react to

normal and attack scenarios with different flow sizes.

3 ML-ENHANCED AUTOMATA LEARNING

Algorithm 1 shows our approach for ML-enhanced automata learn-

ing (MELA). The input to the algorithm is a system, S, denoting
the system under learning (SUL). MELA assumes that S accepts

time-series data as input and generates time-series data as output.

Examples of such systems include cyber-physical systems (CPS)

and network systems [17, 18]. Our approach treats S as a black box

and does not make any assumptions about its internals. In addition

to S, MELA requires four input parameters. These parameters, as

we will discuss later, are used in the routines responsible for gen-

erating traces and abstracting numeric values in time-series data

(lines 7–8 of Algorithm 1). The output of MELA is a state machine

derived based on the time-series data obtained from S.
Following the formalization of signal-based test inputs and out-

puts for CPS [12], we denote a test input for S as i = (𝑖1, 𝑖2 . . . 𝑖𝑚)
and a test output for S as o = (𝑜1, 𝑜2 . . . 𝑜𝑛) where𝑚 is the number

of system inputs, 𝑛 is the number of system outputs, and each 𝑖 𝑗
and each 𝑜 𝑗 is a time-series vector for some input and some output

of S, respectively. Given a time-series vector 𝑣 : [0..𝑇] → 𝐷 , the

time-series range 𝐷 can be either discrete, i.e., 𝐷 ⊆ N, or contin-
uous, i.e., 𝐷 ⊆ R. Discrete time-series ranges can be enumerate

such as 𝐷 = {UDP, TCP}, or numeric such as 𝐷 = {1, . . . , 6000}. As
discussed in Section 1, automata learning algorithms are not able to

abstract and generalize numeric data ranges, whether continuous

or discrete. Figure 4 illustrates time-series vectors over the time

domain [0..30min] for the inputs of RRTRouter, i.e., the attributes

Algorithm 1ML-enhanced automata learning (MELA) for systems

with time-series inputs and outputs.

Input S: System under learning

Param 𝛿 : Sampling rate

Param Max_Depth: Maximum depth of decision trees

Param Sup_Th: Support threshold for range abstraction

Param Purity_Th: Confidence threshold for range abstraction

Output Aut: An automaton abstracting the behaviour of S

1: TimeSeriesData = ∅;
2: do //Data Generation Loop

3: Input = GenerateInput(S);
4: Output = Execute(Input, S);
5: TimeSeriesData = TimeSeriesData ∪ (Input·Output);
6: until (state coverage is not improving)
7: Traces = CreateTraces(TimeSeriesData, 𝛿);
8: Traces′ = AbstractTraces(Traces, Max_Depth, Sup_Th, Conf_Th);
9: Aut = LearnAutomata(Traces′);
10: return Aut;

Figure 4: A test input consisting of time-series vectors corre-

sponding to six inputs of RRTRouter.

shaded green in Figure 2: external user type, protocol, port, packet

size, and RRTRouter’s number of flows and number of unreplied

requests. The external user type and protocol have an enumerated

range, while the other four inputs are numeric.

We assume that among the outputs of system S, there is one

output that captures the system state and has a discrete, enumerable

range. For example, as shown in Figure 2, RRTRouter has a specific

system-state output. A system-state output is often present in CPS

and network systems, which require continuous monitoring and

control [5, 12, 18]. This output offers feedback on the system’s

operational status and helps with decision making and control.

Data Generation. Algorithm 1 begins with a data generation

loop (lines 2–6), where it iteratively generates test inputs for S
and executes system S to produce test outputs. The purpose of

the data generation loop is to produce time-series data to be used

for automata learning. In this loop, the test inputs are randomly

generated using existing parameterized time-series data generation

techniques [4, 29]. To ensure that the learned automata effectively

capture the behaviours of SUL, we need to generate test inputs

that exercise SUL for different scenarios and yield test outputs that

adequately capture SUL’s behaviours. To increase the adequacy of

the generated data, we employ established black-box test coverage

criteria for software testing based on system-state coverage [3].

Specifically, the data generation loop of Algorithm 1 terminates

Conference’17, July 2017, Washington, DC, USA Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh and Patricio Saavedra

Figure 5: Traces for RRTRouter: (a) an example of an actual

trace and (b) the same trace after trace abstraction.

when there is no further improvement in state coverage. This occurs

either when the generated outputs cover all system states or when,

after several consecutive iterations, the outputs do not cover any

new states, indicating that our test generation is unlikely to yield

further improvements in state coverage.

Trace Creation. Algorithm 1 uses the CreateTraces routine

(line 7) to convert time-series data vectors into traces to be used for

autamata learning. Each time-series data vector 𝑣 : [0..𝑇] → 𝐷 is

converted into a sequence 𝑣0, 𝑣1, . . . , 𝑣𝑘 of values using the sampling

rate parameter 𝛿 , which is an input to Algorithm 1. Specifically,

𝑣0 = 𝑣 (0), 𝑣1 = 𝑣 (𝛿), 𝑣2 = 𝑣 (2 · 𝛿), . . . , 𝑣𝑘 = 𝑣 (𝑘 · 𝛿), with 𝑘 · 𝛿 = 𝑇 .

Let i = (𝑖1, 𝑖2 . . . 𝑖𝑚) be a test input of S, and o = (𝑜1, 𝑜2 . . . 𝑜𝑛)
be a test output of S. An input/output trace corresponding to each

pair of test input and output of S is defined as follows:

(𝑖0
1
, . . . , 𝑖0𝑚, 𝑜0

1
, . . . , 𝑜0𝑛), (𝑖01, . . . , 𝑖

0

𝑚, 𝑖1
1
, . . . , 𝑖1𝑚, 𝑜1

1
, . . . , 𝑜1𝑛), . . . ,

(𝑖0
1
, . . . , 𝑖0𝑚, . . . , 𝑖𝑘

1
, . . . , 𝑖𝑘𝑚, 𝑜𝑘

1
, . . . , 𝑜𝑘𝑛)

where 𝑘 is the number of steps with time-step size 𝛿 in time

domain [0..𝑇], and for every 𝑙 , 𝑖
𝑗

𝑙
is the 𝑗th sampled value from

input vector 𝑖𝑙 , and𝑜
𝑗

𝑙
is the 𝑗 th sampled value from output vector𝑜𝑙 .

For example, Figure 5(a) shows a small excerpt from a trace

generated for RRTRouter. The values enclosed within “[” and “]”

are, respectively, sampled from the following test input vectors of

RRTRouter: port, protocol, packet size, num_flows and

External user type. The last value in each tuple is sampled

from the test output vector of RRTRouter: State.
Trace Abstraction. Automata learning approaches assume that

traces consist of abstract values only [20]. Hence, raw numerical

values should be replaced by categorical or interval-based repre-

sentations before applying automata learning. To obtain traces

consisting of abstract values, we use the AbstractTraces routine

(line 8), which is a novel contribution of our work. This routine

uses statistical machine learning to refine traces consisting of raw

numerical values into a more abstract form. The AbstractTraces

routine consists of two steps: First, among all the inputs and outputs

of S, we select those that are non-redundant and most correlated

with the system state. Second, we abstract raw, numeric ranges of

the inputs and outputs of S into discrete categories. Below, we de-

scribe these two steps; we refer to the first step as variable selection
and to the second step as range abstraction.

Variable selection. We use the information gain [32] to calculate

the importance score of each input and each output of Swith respect
to predicting the system state. To do so, we create a table using

the data from our traces such that each column lists the values

appearing in the traces for an individual input or output, and the

last column lists the corresponding values for the system state. We

then compute the information gain of all the columns in this table

with respect to the last column. The information gain quantifies

the predictive relevance of each column, which represents a system

input or output, towards the system state. We rank these columns

based on their importance score and eliminate the lowest-ranked

ones (i.e., select the highest-ranked ones). We then refine the traces

obtained from the trace creation routine (line 7 of Algorithm 1) by

removing the values related to the eliminated inputs and outputs.

For example, by applying variable selection to RRTRouter, we

remove the variables num_unreplied, port, protocol, and packet
size, and retain only num_flows and External User type. This
modification follows the computation of importance scores, where

num_flows and External User type are the top-ranked with a

large distance from the other variables in terms of importance.

Range abstraction. We use decision-tree learners to abstract the

ranges of numeric inputs and outputs included in our traces af-

ter the variable selection step. For each numeric input or output

variable 𝑢, we create a two-column table where the first column

is the values of 𝑢 appearing in the traces, and the second column

is the corresponding values for the system state. We then develop

a decision tree with inputs as the values of 𝑢 and outputs as the

values of the system state which is a categorical variable. The tree’s

construction is controlled by a stopping criterion specified by the

input parameter Max_Depth of Algorithm 1. This parameter deter-

mines the maximum depth to which the tree can grow. Each tree

leaf represents the following information: (1) the count of samples

that are clustered in that leaf (support), and (2) the purity of the

leaf (confidence), which indicates the homogeneity of the samples

within the leaf. A higher purity indicates a greater concentration of

one class; in our context, each class corresponds to a system state.

Every leaf is linked to its immediate parent node through a condi-

tion such as 𝑢 < 𝑐 , where 𝑢 is the variable and 𝑐 is a constant in the

range of 𝑢. Among all the tree leaves, we select the ones that have

a number of samples and a purity percentage, respectively, higher

than the Sup_Th and Purity_Th thresholds, which are input pa-

rameters of Algorithm 1. We consider the conditions 𝑢 < 𝑐 linking

the selected leaves to their immediate parent nodes. Let 𝑐1, . . . , 𝑐𝑘
denote the constants in ascending order that appear in these con-

ditions. We partition the range of 𝑢 into the following intervals:

[0, 𝑐1), [𝑐1, 𝑐2) . . . [𝑐𝑘 ,∞). Then in our traces, we replace the nu-

meric values of 𝑢 with the categories representing these intervals.

For example, Figure 6 shows a decision tree used to abstract the

numeric num_flows variable. As shown in Figure 5(b), our traces for
RRTRouter include tuples relating values of num_flows and other

input variables of RRTRouter to system-state values. The decision

tree in Figure 6 determines, based on the num_flows and state
values extracted from traces, how well num_flows predicts the

system state. For this example, we assume that Max_Depth is set to 3,
and the Sup_Th and Purity_Th thresholds are set to 20% of the total

data and to 70%, respectively. In Figure 6, we show the generated

tree leaves and their respective number of samples and purity level.

We select all three leaves in the figure, i.e., Node 2, Node 4 and

Node 5, since for all these leaves, both the sample count and purity

are greater than their respective thresholds. Based on the conditions

linking these leaf nodes to their parent nodes, we partition the range

of num_flows into the following intervals: [0, 454), [454, 3500),
[3500,∞). The number of intervals is not fixed a priori and depends

on the decision tree. For num_flows, as we have three intervals, we

Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study Conference’17, July 2017, Washington, DC, USA

Figure 6: Illustrating how a decision tree is used to ab-

stract the numeric range of the num_flows input attribute.

The numeric range of num_flows is abstracted to the enu-

merated range [Low, Med, High] such that “Low”=[0, 454),
“Med”=[454, 3500), and “High”=[3500,∞).
designate them as “Low”, “Med”, and “High”, respectively, for better

readability. Specifically: “Low”=[0, 454), “Med”=[454, 3500), and
“High”=[3500,∞). After performing variable selection and range

abstraction for RRTRouter, we convert the trace in Figure 5(a) to

that in Figure 5(b).

Automata Learning. Algorithm 1 uses the LearnAutomata

routine to build an automaton (line 9) from abstract traces. We

realize this routine using the well-known Regular Positive Negative

Inference (RPNI) [2, 10, 14] algorithm which is for passive learning.

While the original RPNI algorithm has been designed to generate

DFAs, there are variants of RPNI that can learn Mealy and Moore

machines [20], which are more expressive models of computation

wherein outputs depend not only on the current state but also

on inputs. For our case-study system, RRTRouter, we choose to

generateMoore machines, as this system’s traces include both inputs

and outputs. Furthermore, Moore machines map outputs directly

to states, making them a suitable representation for RRTRouter, as

the output of RRTRouter reflects the system’s state. In the rest of

this paper, depending on the context, we interchangeably refer to

the outputs of our approach – Moore machines – as either state

machines or automata.

For example, Figure 3 shows a simplified state machine learned

for RRTRouter, illustrating how it transitions between different

states – Safe, Warning, and Alert – based on the number of flows

– Low, Med(ium), or High – and different external user types –

Normal or DDoS. Briefly, RRTRouter starts in the Safe state and
maintains this state while there is no attack, i.e., Normal users

sending flows, or when an attack involves low numbers of flows.

The system transitions to the Warning state under a medium-flow

DoS attack, escalating to the Alert state under a high-flow DoS

attack.

4 EVALUATION

We evaluate MELA by (1) assessing the complexity and accuracy

of the generated state machines in representing the behaviours of

our case-study system (RRTRouter), and (2) investigating how the

learned state machines help with verifying this system against its

requirements and exploring unknown behaviours. Specifically, our

evaluation aims to answer the following research questions (RQs):

RQ1 (Complexity and Conformance). How effective is the
trace abstraction component of MELA in reducing the complexity
of the generated state machines while maintaining a high-level of
accuracy? RQ1 assesses how the trace abstraction component of

MELA, specifically line 8 of Algorithm 1, impacts the complexity

and accuracy of the generated state machines. The primary goal of

the MELA is to generate state machines that are understandable,

abstract, yet highly accurate, ensuring high conformance to SUL.

We consider two baselines for RQ1: (1) An approach that learns

state machines from the traces generated by RRTRouter without

performing any trace abstraction, and (2) An approach that incor-

porates a trace abstraction component similar to MELA, but rather

than relying on statistical machine learning, it uses manually de-

fined abstractions based on expert judgment. We refer to the former

baseline as Passive since it is the same as the state-of-the-art pas-

sive automata learning, and to the latter as Manual since it uses

manually defined abstractions and human judgment.

RQ2 (Verification). Do the state machines learned using MELA
help determine whether the system meets its requirements and explore
its unknown behaviours? In collaboration with RRT, we elaborate

the system-level requirements of RRTRouter into detailed temporal

properties. As discussed in Section 2, the behaviours of RRTRouter

is not fully known, particularly for the circumstances under which

the system may enter the Tending Warning and Tending Alert
states. To explore unknown system behaviours, in addition to tem-

poral properties, we develop temporal queries which are temporal

properties with placeholders [8]. Temporal queries yield predicates

such that, when these predicates replace the placeholder in the

query, they form a property that holds over the state machine. We

report on the evaluation of our temporal properties and queries

against the state machines learned in RQ1.

4.1 Testbed Implmenetation

We generate the time-series input data for MELA using the testbed

presented in Figure 1b. Our testbed consists of three virtual ma-

chines (VMs) created using VirtualBox [22] and deployed on three

separate laptop computers. The left VM, i.e., VM-left, simulates

local users, the centre VM, i.e., VM-centre, hosts the RRTRouter

from RRT, and the third VM, i.e., VM-right, simulates external users.

Both attackers and normal users are simulated using VM-right,

while VM-left is designed to capture potential vulnerabilities in

local users. VM-right generates two types of data flows: normal traf-

fic and DoS/DDoS packets, using the hping3 tool [16] – a network

tool designed for testing firewall rules and network performance.

After passing through RRTRouter (VM-centre), these flows are di-

rected to VM-left, running Metasploitable [26] – an intentionally

vulnerable Linux VM for security and penetration testing. VM-left

and VM-right are connected to RRTRouter using two unmanaged

NETGEAR GS308v3 Gigabit Ethernet switches. The time-series

values for all input and output variables of the system, except for

the values of the external user type variable, are gathered from
VM-centre. The values for external user type, which are not

accessible through VM-centre, are collected from VM-right.

4.2 RQ1: Complexity and Conformance

We discuss the experiment design and the results obtained for RQ1.

4.2.1 Baselines. We compare MELA with the Passive and Man-

ual baselines (introduced earlier). These baselines obtain traces

similarly to MELA, using the same data generation loop and trace

creation steps, i.e., lines 1–7 of Algorithm 1. However, the baselines

differ from MELA on line 8. Specifically, Passive skips line 8 and

Conference’17, July 2017, Washington, DC, USA Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh and Patricio Saavedra

proceeds directly to automata learning, i.e., line 9 of Algorithm 1,

after the traces are created. The Manual baseline, on the other

hand, uses a two-step data abstraction process, similar to that of

MELA, which encompasses variable selection and range abstrac-

tion. This baseline nonetheless relies on expert knowledge rather

than machine learning. Specifically, for variable selection, a domain

expert manually selects the most relevant input and output vari-

ables of RRTRouter for identifying DoS and DDoS attacks. In the

range abstraction step, the expert abstracts the numeric ranges by

partitioning them into enumerated categories of his choice.

4.2.2 Experiment Design. To compare MELA with the two base-

lines, we use identical sets of traces as inputs for these techniques

by applying the data generation and trace creation steps of Algo-

rithm 1 over the testbed described in Section 4.1. We refer to the

generated trace sets, which are used to learn automata, as learning
sets. We use time-series vectors with a time domain [0..256𝑚𝑖𝑛]
for the input generation routine, i.e., line 3 of Algorithm 1, and

the sampling rate 𝛿 = 10𝑠𝑒𝑐 to convert the time-series data vectors

into traces by the trace creation routine, i.e., line 7 in Algorithm 1.

The choice of sampling rate is based on the minimum refresh rate

that our testbed supports. A long duration in the time domain was

recommended by the domain expert to enable us to obtain traces

achieving higher state coverage.

As discussed in Section 2, RRTRouter’s inputs consist of normal

traffic combined with either DoS or DDoS attacks. We do not alter-

nate between DoS and DDoS attacks during an individual testing

campaign, as each type of attack requires a different experimental

setup. Hence, we develop distinct learning sets for DoS and DDoS at-

tacks, resulting in separate state machines capturing the behaviours

of RRTRouter for each attack type. To account for randomness in

the generation of the learning sets, we rerun the data generation

loop of Algorithm 1 five times for DoS and five times for DDoS,

obtaining five different learning sets for each attack type. For DoS,

three of these learning sets covered only three system states (Safe,
Warning, and Alert in Figure 2), while the other two sets covered

all five system states in Figure 2. For DDoS, all generated learning

sets could only cover three out of the five system states, i.e., Safe,
Warning, and Alert. This inability to achieve full state coverage

led to further investigation, as we will explain in Section 4.3. This

investigation revealed, as confirmed by our domain expert, that the

two states, Tending Warning and Tending Alert, are unreachable
under DDoS attacks.

In view of the above, we use the following learning sets for our

experiments: DoS3, the union of the three learning sets for DoS

with three-state coverage; DoS5, the union of the two learning sets

for DoS with five-state coverage; and DDoS, the union of the five

learning sets for DDoS. We note that one could obtain a single

learning set for DoS by combining all five learning sets. However,

as indicated in our online material [1], the state machines obtained

by unioning all five sets and those obtained by combining the two

five-state coverage sets are identical. Hence, in the paper, we present

the results for two separate DoS learning sets – one for three-state

and another for five-state coverage – to facilitate direct comparison

with the DDoS results, which only achieve three-state coverage.

Table 1(a) shows the average length of traces in DoS3, DoS5, and

Table 1: Parameters for our experiments: (a) parameters of

the learning sets used byMELA and the baselines; (b) parame-

ters of the trace abstraction step ofMELA; and (c) information

about trace abstraction in the Manual baseline.

a. Trace Generation for MELA, Manual and Passive

Learning Set Avg Trace Length Execution Time (m)

DoS3: 3-state coverage 1530 870

DoS5: 5-state coverage 1402 474

DDoS: 3-state coverage 1523 1420

b. Trace Abstraction for MELA

Variables Selected by Information Gain Range Abstraction by Decision Tree

1st: num_flows Max_Depth: 3
2nd: num_unreplied Purity_Th: 0.7
Top-2: num_flows and num_unreplied Sup_Th: 0.2 × 𝑛;𝑛 is total data

c. Trace Abstraction for the Manual baseline

Variables Selected by Domain Expert Range Abstraction by Domain Expert

Let 𝑑 be the max range of the numeric variable:

1st: num_flows Low: [0...0.33 × 𝑑]
2nd: num_unreplied Med: [0.33 × 𝑑...0.66 × 𝑑]
Top-2: num_flows and num_unreplied High: [0.66 × 𝑑...𝑑]

DDoS, as well as the total execution time (in minutes) required to

generate the traces in these learning sets.

For the trace abstraction step of MELA, i.e., line 8 of Algorithm 1,

we perform variable selection and range abstraction. For variable se-

lection, we rank RRTRouter’s input variables, i.e., variables shaded

green in Figure 2, based on their information gain relative to the

system state. In our experiments, there is a significant information-

gain gap between the second- and third-ranked variables. There-

fore, we consider three alternative cases involving the selection

of the two top-ranked variables of the system: (1) selecting the

variable with the highest information gain, i.e., 1st: num_flows;
(2) selecting the variable with the second-highest information gain,

i.e., 2nd: num_unreplied; and (3) selecting the top two variables

with the highest information gains, i.e., Top-2: num_flows and

num_unreplied. For range abstraction, we use a decision tree to

convert the numeric ranges of the RRTRouter’s variables into enu-

merated ranges. We set the tree’s maximum-depth parameter in

Algorithm 1 to three (i.e., Max_Depth = 3); this helps avoid overfit-

ting and prevents our trees from generating too many leaves, which

may result in partitioning numeric ranges into several fine-grained

intervals and having overly detailed enumerated ranges. Further,

we set the Sup_Th parameter to 20% of the total data count used

for building the decision tree, and the Purity_Th parameter to 70%.

This ensures that the tree leaves selected for defining partitions

contain a sufficient number of elements corresponding to a specific

system state. The details related to the trace abstraction component

of MELA for our experiments are presented in Table 1(b).

Since the Passive baseline does not perform any trace abstrac-

tion, it has no parameters related to trace abstraction. For the Man-

ual baseline, we use the domain expert’s judgment for variable

selection and range abstraction. Specifically, for variable selection,

we requested the domain expert to select the two variables that, in

his opinion, most significantly impact the state of RRTRouter. The

variables selected by the expert matched those identified by our

approach. For range abstraction, the expert suggested dividing the

ranges of each numeric variable into three equal intervals of Low,
Med and High. The information related to the trace abstraction for

the Manual baseline is shown in Table 1(c). Finally, for automata

Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study Conference’17, July 2017, Washington, DC, USA

learning, MELA and the two baselines use the RPNI passive learning

algorithm implemented by the AALpy [20] tool, a Python library

that provides a range of advanced automata learning algorithms.

4.2.3 Metrics. To assess the complexity of the generated state

machines, we report the number of states, the number of transitions,

and the size of the input alphabet. These three size-based metrics

are commonly used in the literature to evaluate the complexity

of state machines [15]. To measure the accuracy of the learned

models, we follow the established practice in the automata learning

literature [2] and compare the models against the ground truth, i.e.,

traces generated by the RRTRouter’s testbed in our context. We

note that the learned automata in passive learning are only as good

as the traces in the learning sets. Since the learning sets might be

incomplete, there could be an accuracy gap between the behaviours

of the learned automata and those of the actual system.

To measure the accuracy of MELA and the two baselines, we

generate five randomly generated sets of traces and determine the

percentage of these traces that the automaton generated by each

technique can accept. We refer to these sets as test sets. We use

the data generation loop of Algorithm 1 to create these test sets.

To ensure that we cover a range of trace lengths, we generate five

test sets referred to as very small, small, medium, large, and very
large. Each test set has 100 traces, leading to a total of 500 traces for

assessing the accuracy of the learned automata. The average trace

lengths in these test sets are as follows: very small at 70, small at

138, medium at 207, large at 276, and very large at 345. The lengths

of the traces in the very small, small, medium, large, and very large

test sets are chosen to be approximately 10%, 20%, 30%, 40%, and

50% of the trace length in the learning set, respectively. It took

approximately 600 hours to generate the traces in these test sets

using our testbed discussed in Section 4.1. Given the high cost of

trace generation, we decided to cap the max length of traces in test

sets at 50% of the size of traces in our learning sets.

4.2.4 Results. To answer RQ1, we applied MELAas well as the

Manual and Passive baselines to the learning sets DoS3, DoS5 and

DDoS. However, using the Passive baseline, we could not generate

any automaton. Recall from Section 4.2.1 that Passive does not

perform any abstraction and uses the traces with raw numeric val-

ues. Provided with such traces, the AALpy tool failed to generate

any result since the traces contained too many distinct numeric

values. Hence, we only compare the results of MELA and Manual

with respect to our complexity and accuracy metrics discussed in

Section 4.2.3. Table 2 reports the number of states and transitions

and the alphabet size for the generated automata by MELA and the

Manual baseline. Specifically, we obtain 18 automata by applying

the two approaches to the three different learning sets and consid-

ering three different abstraction options of 1st, 2nd, and Top-2.
Figure 7 shows the accuracy results for the learned automata by

MELA andManual. The accuracy values are computed by applying

each of the 18 learned automata to the 500 test traces described in

Section 4.2.3. Each plot in Figure 7 shows the accuracy distribution

of each learned automaton with respect to our 500 test traces.

As indicated by Table 2 and Figure 7, all the 18 generated au-

tomata by MELA have fewer states and transitions than the corre-

sponding autoamta generated by Manual. Through the ML-based

trace abstraction in MELA, we obtain automata that, on average,

Table 2: Comparing the number of states, number of transi-

tions, and the alphabet size for the state machines learned

by MELA versus by the Manual baseline.

Learning set Configuration

MELA Manual

States # Transitions |Alphabet| # States # Transitions |Alphabet|

DoS3
Top-2 3 11 7 23 65 8

1st 3 9 5 290 325 5

2nd 19 51 5 29 68 5

DDoS
Top-2 3 11 7 20 52 8

1st 3 9 5 284 319 5

2nd 17 46 5 24 62 5

DoS5
Top-2 46 83 8 167 253 9

1st 47 78 5 410 499 5

2nd 121 187 5 178 267 5

MELA MANUAL0

20

40

60

80

100

D
oS

3
Ac

cu
ra

cy
(%

)

100.00

45.40

1st

MELA MANUAL0

20

40

60

80

100 100.00

62.20

2nd

MELA MANUAL0

20

40

60

80

100

50.60 45.40

Top-2

MELA MANUAL0

20

40

60

80

100

D
D

oS
Ac

cu
ra

cy
(%

)

100.00

78.80

MELA MANUAL0

20

40

60

80

100 100.00 100.00

MELA MANUAL0

20

40

60

80

100 100.00

58.80

MELA MANUAL0

20

40

60

80

100
D

oS
5

Ac
cu

ra
cy

(%
)

100.00
87.20

MELA MANUAL0

20

40

60

80

100

57.80 56.20

MELA MANUAL0

20

40

60

80

100 100.00

15.60

Figure 7: Comparing the accuracy of the state machines

learned by MELA versus by the Manual baseline for dif-

ferent learning sets (DoS3, DoS5 and DDoS), and different con-

figurations (1st, 2nd, and Top-2 as defined in Table 1).

have 69.61% fewer states and 65.41% fewer transitions than au-

tomata derived using expertise-based abstraction. Further, the al-

phabet size of the automata generated by MELA is the same as

or smaller than that of the automata generated by Manual. The

accuracy results in Figure 7 show that MELA not only substantially

reduces the size of the learned automata but also results in signifi-

cantly more accurate automata. On average, the automata learned

by MELA are 28.75% more accurate than those learned by Manual.

RQ1: Our approach (MELA) leads to an average reduction

of 67.5% in the number of states and transitions of the

learned automata, while improving accuracy by an average

of 28% compared to using expertise-based abstractions for

automata learning.

4.3 RQ2: Verification

To answer RQ2, we use six state machines from RQ1: (a) three devel-

oped using the DoS5 learning set (the learning set with the highest

coverage for DoS attacks), corresponding to the 1st, 2nd, and Top-2
configurations; and (b) three developed using the DDoS learning set

for DDoS attacks, corresponding to the same configurations.

Conference’17, July 2017, Washington, DC, USA Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh and Patricio Saavedra

Table 3: Model-checking results for the temporal properties

derived from RRTRouter requirements R1 and R2
(a) Results for temporal properties derived from R1

Learning set

1st 2nd Top-2
Low Med High Low Med High Low Med High

G(Attack ∧ S =⇒ X(W ∨ TW))

DoS5 × ✓ v × ✓ v × ✓ v

DDoS × ✓ v × ✓ v × ✓ v

G(Attack ∧ W =⇒ X(A ∨ TA))

DoS5 v × ✓ v ✓ ✓ v × ✓
DDoS v × ✓ v × ✓ v × ✓

G(Attack ∧ A =⇒ X(A ∨ TA))

DoS5 v × ✓ v ✓ ✓ v × ✓
DDoS v × ✓ v × ✓ v × ✓

(b) Results for temporal properties derived from R2
Learning set

1st 2nd Top-2
Low Med High Low Med High Low Med High

G(Normal ∧ S =⇒ X(S))

DoS5 ✓ v v ✓ v v ✓ v v

DDoS ✓ v v ✓ v v ✓ v v

G(Normal ∧ W =⇒ X(S))

DoS5 ✓ × v ✓ × v ✓ × v

DDoS v × v ✓ × v ✓ × v

G(Normal ∧ A =⇒ X (W ∨ TW))

DoS5 v v v v v v v v v

DDoS v v v v v v v v v

We identify two high-level requirements for RRTRouter related

to its intrusion detection function: 𝑅1 When attacks happen, the
system shall change state in a staged manner from safe to warning
and from warning to alert. 𝑅2 When attacks are stopped, the system
shall restore in a staged manner its state from alert to warning, and
from warning to safe. In collaboration with RRT, we derived tem-

poral properties from 𝑅1 and 𝑅2, shown in the leftmost columns of

Tables 3(a) and 3(b), respectively. These properties are expressed

as Linear Temporal Logic (LTL) formulas [9, 25], where “G” is the

globally operator and “X” is the next state operator. For succinct-

ness, we use abbreviated names for states: “S” for Safe, “W” for

Warning, “A” for Alert, “TW” for Tending Warning, and “TA” for

Tending Alert. For example, the property G (Attack ∧ S =⇒
X (W ∨ TW)) specifies that if an attack occurs at state S, the system

must transition to W or TW in the next state.

The properties in Table 3(a), derived from 𝑅1, indicate that the

system must transition to a higher criticality level in the next state

in response to DoS or DDoS attacks. Here, state S represents the

lowest criticality state, while TA and A denote the highest. Note

that when RRTRouter is in the TA or A states and an ongoing attack

persists, the system shall remain in the TA or A state. In a dual

manner, the properties in Table 3(b), derived from 𝑅2, indicate that

the system must transition to a lower criticality level under normal

traffic conditions and when there is no ongoing attack.

As discussed in Section 2, there is uncertainty regarding the sys-

tem’s subsequent state after attack scenarios or under normal traffic

conditions for the TW and TA states. Hence, we cannot develop

temporal properties having TW and TA as their antecedent similar

to those in Tables 3(a) and 3(b). Instead of temporal properties, we

develop temporal queries with placeholders shown in the leftmost

column of Table 4. The queries in Table 4 enable us to explore the

subsequent state of RRTRouter at the TW and TA states under at-

tack and normal traffic. For example, the temporal query G (Attack

∧ TA =⇒ X (?)) uses a placeholder for the “X” operator.

4.3.1 Model-checking. Tables 3(a) and 3(b) show the results of veri-

fying the state machines obtained from the DoS5 and DDoS learning
sets against the temporal properties for 𝑅1 and 𝑅2, respectively. For

each state machine, a temporal property is marked as pass (✓) if it
holds, as fail (×) if it is violated, or as vacuous (v) if the property’s
antecedent is never met, resulting in vacuous satisfaction [6]. Note

Table 4: Exploring the behaviours of RRTRouter at the TW

and TA states using temporal queries.

Learning set

1st 2nd Top-2
Low Med High Low Med High Low Med High

G(Attack ∧ TW =⇒ X(?))

DoS5 v TW ∨ TA A∨ TA v TW TW ∨ TA v TW TA

DDoS v v v v v v v v v

G(Attack ∧ TA =⇒ X(?))

DoS5 v W A ∨ TA v W A ∨ TA v W A ∨ TA

DDoS v v v v v v v v v

G(Normal ∧ TW =⇒ X(?))

DoS5 v v v v v v v v v

DDoS v v v v v v v v v

G(Normal ∧ TA =⇒ X(?))

DoS5 v v v v v v v v v

DDoS v v v v v v v v v

that the antecedent refers to the subformulas of the properties in

Tables 3(a) and 3(b) that appear before the =⇒ operator. When

assessing the temporal properties, we observed that the number

of attack and normal flows has a significant impact on the results.

Therefore, Tables 3(a) and 3(b) present the results for low, medium,

and high numbers of flows separately.

For example, the property G (Attack ∧ S =⇒ X (W ∨ TW))

holds for the state machines learned for both DoS5 and DDoS and
for the 1st, 2nd, and Top-2 configurations when the number of

flows is medium. The property fails when the number of flows is

low and is vacuous when the number of flows is high. This indicates

that when the system is in its Safe state, requirement 𝑅1 is met

only when the number of attack flows is medium; a low-flow attack

goes undetected, and a high-flow attack never happens. Specifically,

the property G (Attack ∧ S =⇒ X (W ∨ TW)) holding vacuously

for high-flow traffic implies that the antecedent, Attack ∧ S, never

holds when the number of attack flows is high.

4.3.2 Query-checking. Table 4 shows the results of evaluating the

state machines obtained from the DoS5 and DDoS learning sets

against our temporal queries for 𝑅1 and 𝑅2. Evaluating a temporal

query on a state machine either yields a predicate or results in

vacuity (v) if the query’s antecedent is nevermet.When the outcome

is a predicate, the property obtained by replacing the placeholder in

the query with the predicate will hold over the state machine. For

example, consider query G (Attack ∧ TA =⇒ X (?)) in Table 4. The

results indicate that RRTRouter never experiences a low-flow attack

when in state TA. This is because, for all the state machines, this

query is vacuous for low-flow traffic. However, for medium-flow

DoS attacks, the query yields W, meaning that when subjected to

such attacks in the TA state, the system transitions to the W state.

4.3.3 Analysis. The results presented in Tables 3(a), 3(b), and 4

indicate that some temporal properties are violated and several

properties and queries are vacuous. Below, we discuss the reasons

for these violations and vacuities and assess whether the results

obtained from different state machines are consistent.

Do violations (×) imply defects? The pass and fail results in

Tables 3(a) and 3(b) show that RRTRouter reacts to DoS/DDoS at-

tacks with only medium or high number of flows, ignoring low-flow

attacks. Medium-flow attacks prompt RRTRouter to transition from

state S to TW orW, but not to its most critical states, TA or A, which

occur only with high-flow attacks. Dually, RRTRouter returns to

state S only with low-flow normal traffic. In addition, the combina-

tion of normal traffic with a high number of flows does not appear

in our state machines. This matched the domain expert’s intuition,

who noted that only attackers (and not normal users) may generate

such high numbers of flows. We emphasize that the range for a

Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study Conference’17, July 2017, Washington, DC, USA

“high” number of flows is learned by our trace abstraction approach

and is not a-priori known at the time of trace generation. The fact

that the combination of normal traffic with a high number of flows

is never generated indicates that our trace abstraction step is able to

effectively differentiate between normal users and obvious attack-

ers generating a high number of flows. Furthermore, RRTRouter

remains in the TW and W states for medium-flow normal traffic,

indicating that it considers this traffic suspicious.

After discussing these findings, our domain expert confirmed

that the system’s behaviours are acceptable. In particular, since low-

flow DoS and DDoS attacks do not degrade the quality of service for

clients, there is no need for the system to react. When recovering

from a recent attack, however, it is acceptable for the system to flag

medium-sized normal traffic as suspicious. This is because in a real-

world deployment, the system does not have an oracle to inform it

whether it is still under attack, and it is challenging to distinguish

medium-flow normal traffic from DoS and DDoS attacks.

The property violations identified in Tables 3(a) and 3(b)

do not indicate defects in RRTRouter. Rather, they indicate

that requirements 𝑅1 and 𝑅2 need to be refined to explicitly

specify the thresholds for the number of attack and normal

flows that the system should treat as suspicious.

Do vacuities (v) show gaps? The vacuous cases in Tables 3(a)

and 3(b) are due to two factors: (1) Not all numbers of flows are

observable in every system state. This is expected since DoS and

DDoS attacks typically start at a low number of flows and gradually

escalate. It is typical for a high-flow DoS or DDoS attack to be

preceded by a medium-flow phase, which itself follows a low-flow

stage. Hence, since a medium-flow attack shifts the state from S

to W or TW, a high-flow attack is not observed at state S. (2) As

discussed in Section 4.2.2, under a DDoS attack, RRTRouter does

not transition to TW and TA states, leading to vacuous outcomes

for properties involving these states. Our domain expert confirmed

that DDoS attacks involve larger numbers of flows than DoS attacks,

causing RRTRouter to bypass the TW and TA states.

The observed vacuities are not due to gaps (incomplete-

ness) in the learning sets obtained from our testbed. Rather,

vacuity occurs because the physical characteristics of net-

work flows impose certain constraints, such as attacks not

starting immediately with a high number of flows but need-

ing to grow over time from a lower number. This indicates

that, along with the requirements, the environmental as-

sumptions of RRTRouter should also be made explicit to

help with refining the temporal properties of Tables 3(a)

and 3(b) to avoid vacuity.

Are the results obtained from different state machines

consistent? Our state machines – learned based on different con-

figurations, i.e., 1st, 2nd, and Top-2 – yield highly consistentmodel-

checking and query-checking results. In particular, only 8% (3 out

of 36 cases) of the model-checking results in Tables 3(a) and 3(b)

are inconsistent. Inconsistency means that, for a given property,

learning set, and range for the number of flows, we obtain different

results for the state machines built using the 1st, 2nd, and Top-2
configurations. In all inconsistent cases, out of the three alternative

state machines (1st, 2nd, and Top-2), two are in agreement, indi-

cating that the inconsistencies can be resolved through a majority

voting between the state machines. Similarly, 12.5% (3 out of 24

cases) of the query-checking results in Tables 4 are inconsistent.

Nevertheless, in all of these inconsistent cases, the inconsistency

can be resolved by weakening the learned predicates through tak-

ing their disjunction. The reason this strategy works is that the

predicates replace the consequents of their respective temporal

queries, and a disjunction (weakened predicate) still ensures the sat-

isfaction of the query. For example, the query G (Attack ∧ TW =⇒
X (?)) with medium-flow attack, respectively derives the predicates

TW ∨ TA, TW, and TW for configurations 1st, 2nd, and Top-2.
Here, the disjunction of the predicates would be: TW ∨ TA.

State machines obtained by different configurations of

MELA yield highly consistent model-checking and query-

checking results, showing the robustness of our trace ab-

straction approach. Furthermore, inconsistencies can be

resolved by using a majority vote for model checking and

by taking the disjunction of predicates for query checking.

4.4 Validity Considerations

Internal validity. To improve internal validity, we implemented

measures to minimize the impact of extraneous factors. Specifically,

(1) we controlled the trace generation process to prevent external

traffic not initiated by our simulations from reaching the local users

or the router; (2) we monitored the network during the experiments

to ensure the absence of anomalies that might have arisen due to

events beyond our control; and (3) to construct each dataset, we

repeated the trace generation process five times and combined the

results, thereby mitigating the effects of random variability.

External validity.While we believe our approach should gen-

eralize to other types of systems with numeric time-series inputs

and outputs, we note that our evaluation was conducted on a single

system in the domain of network intrusion detection. To more con-

clusively examine the generalizability of our approach and improve

external validity, further experimentation with other systems, such

as cyber-physical systems, would be necessary.

5 RELATEDWORK

In this section, we compare our work with relevant strands in three

areas: (1) automata learning and verification for network protocols,

(2) model mining for intrusion detection systems, and (3) supervised

rule mining for numeric systems.

Automata learning and verification for network protocols.
Muskardin et al. [2] employ AALpy – the same tool we use in this

paper for automata learning – to compare passive and active learn-

ing for network protocols [23]. They observe that active learning:

(1) is time-consuming, especially when the system under learning

needs resetting for each new input/output trace; (2) requires a fault-

tolerant learning setup for interaction, which can be complex and

limit practicality; and (3) involves significant interaction with the

Conference’17, July 2017, Washington, DC, USA Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh and Patricio Saavedra

system under learning, incurring high costs due to the potential for

losses or delays. Based on these observations, Muskardin et al. argue

that passive learning is a more efficient alternative for real-world

problems if one can have a diverse and yet sparse dataset of sys-

tem behaviours. Our work follows the same rationale for choosing

passive learning over active learning. To improve learning-set di-

versity and coverage, we used randomization by rerunning the data

generation loop of Algorithm 1 multiple times, further ensuring

that we captured all known system states. The resulting learning

sets are relatively small (with an average trace length of 1̃500), thus

remaining amenable to effective passive learning.

Fiterau et al. [11] employ automata learning to derive behavioural

models for TCP protocol components and apply model checking

to verify their conformity with Request for Comments (RFCs). Our

approach to learning differs from theirs in two main respects: (1)

they do not address numeric systems, making their abstractions

unsuitable for our context, and (2) they use active learning, whereas

we use passive learning. Both our work and Fiterau et al.’s employ

model checking to verify the resulting models. However, the nature

of the properties of interest differs: while they examine interactions

in TCP network protocol components, we assess the behaviours of

an entire system (a network router) in its deployment environment.

Model mining for intrusion detection systems. ML technolo-

gies have become crucial for enhancing automated intrusion de-

tection systems. However, as observed by Shahraki et al. [27], ML

techniques used for network-trafficmonitoring and analysis (includ-

ing for our use case in this paper) have thus far been heavyweight

and primarily tailored to enterprise networks. Little attention has

been given to lighter-weight techniques that would be suitable for

the needs of small networks or resource-parsimonious networking

platforms, such as those prevalent in the market where our industry

partner operates. Another issue related to the application of ML for

intrusion detection is the lack of interpretability, as humans often

struggle to comprehend the deep operational layers of ML-based

intrusion detection systems [31].

We are not the first to explore the application of passive learning

to mine interpretable models for network intrusion detection sys-

tems. Cao et al. [7] use passive learning to construct probabilistic

state machines for detecting network anomalies based on features

such as protocol, bytes sent, and flow duration. We differ from

Cao et al. in two key aspects. First, our work focuses on router

firewall behaviours, emphasizing state transitions (Safe, Warning,

Alert) based on network flows, whereas Cao et al. target anomaly

detection in Kubernetes clusters. Our use case differs from theirs,

and the solutions are not interchangeable. Second, whereas Cao

et al. use clustering for numeric-range partitioning, we employ

decision-tree learners. Noting that our experimental setup allows

for control over attack and non-attack scenarios without manual

effort or compromising accuracy in labelling, decision trees are

advantageous over clustering due to their better interpretability

and resilience to outliers and dataset imbalances.

Supervised rule mining for numeric systems. Our research
relies on supervised rule mining to improve the abstraction of be-

havioural models for numeric systems. While we are not aware of

prior research that employs supervised rule mining for a similar

application, recent work on rule mining for numeric systems has in-

spired our approach. Notably, Jodat et al. [17, 18] propose a method

for combining machine learning and adaptive random testing to

identify test inputs leading to non-robust and potentially failing

system behaviours. Our current research was conducted with the

same industry partner as Jodat et al. (namely, RabbitRun Technolo-

gies). However, this prior work focuses on a different aspect of the

partner’s system, specifically controlling the flow of network traffic

(traffic shaping). In short, this earlier research neither concerns

learning behavioural models nor addresses intrusion detection.

6 LESSONS LEARNED AND FUTUREWORK

Below, we reflect on the lessons learned from the development

of MELA. We believe our lessons would be most relevant for (1)

researchers interested in behavioural model mining and model-

based verification of cyber-physical and network systems, and (2)

practitioners applying model-based analysis for cybersecurity.

(1) For systems with time-series inputs and outputs, automata
learning produces effective, interpretable behavioural models. While
interpretable statistical learning is effective at deriving static abstrac-
tions from data, it is not as effective at capturing temporal behaviours
encoded in time-series data. Interpretable ML methods [19], such

as decision trees and decision rules, are effective in identifying

predicates that explain the relationship between system inputs and

system states. However, they are inadequate in capturing tempo-

ral relationships between states and in understanding how system

inputs might trigger change of states. Our research shows that:

(1) automata learning, due to its ability to capture temporal be-

haviours effectively, proves useful for mitigating the shortcomings

of statistical learning, and (2) to overcome the limitations of au-

tomata learning in abstracting data, one can increase the level of

abstraction in traces first before attempting to learn automata.

(2) Automata learning is useful for analyzing and gaining a better
understanding of cyber-intrusion detection systems. There is a lack of
industrial case studies on the automated derivation of behavioural

models for cyber-intrusion detection systems. Our work highlights

some important contextual factors related to the construction of

behavioural models for such systems, notably the numeric and

time-series nature of the inputs and outputs of these systems, as

well as the lack of amenability to active learning techniques due to

the difficulty of building query-and-response loops. An important

lesson learned from our work is the feasibility of automata learning

for cyber-intrusion detection systems through an explicit treatment

of time-series numeric data and the use of passive learning.

In future work, we plan to further explore model-based construc-

tion and verification of cyber-intrusion detection systems. This

includes developing domain-specific languages for this purpose,

implementing federated learning of state machines based on nu-

merous instances of routers used by our industry partner’s clients,

and generating synthetic adversarial attacks to iteratively improve

the quality of the learned state machines.

7 DATA AVAILABILITY

We publicly share our input generation scripts, trace creation and

abstraction routines, along with all experimental data, including

datasets for training and testing, and the resulting statemachines [1].

Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] 2024. MELA: Machine Learning-Enhanced Automata Learning. GitHub reposi-

tory. Artifacts and Supplementary Material [Online]. Available: https://github.

com/neayoughi/MELA.git.

[2] Bernhard K. Aichernig, Edi Muskardin, and Andrea Pferscher. 2022. Active vs.

Passive: A Comparison of Automata Learning Paradigms for Network Protocols.

In Proceedings Fourth International Workshop on Formal Methods for Autonomous
Systems (FMAS) and Fourth International Workshop on Automated and verifiable
Software sYstem DEvelopment (ASYDE), FMAS/ASYDE@SEFM 2022, and Fourth
International Workshop on Automated and verifiable Software sYstem DEvelopment
(ASYDE)Berlin, Germany, 26th and 27th of September 2022 (EPTCS, Vol. 371), Matt

Luckcuck and Marie Farrell (Eds.). 1–19.

[3] Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge

University Press.

[4] Aitor Arrieta, ShuaiWang, UrtziMarkiegi, AinhoaArruabarrena, Leire Etxeberria,

and Goiuria Sagardui. 2019. Pareto efficient multi-objective black-box test case

selection for simulation-based testing. Information and Software Technology 114

(2019), 137–154.

[5] Foozhan Ataiefard, Mohammad Jafar Mashhadi, Hadi Hemmati, and Neil Walkin-

shaw. 2022. Deep State Inference: Toward Behavioral Model Inference of Black-

Box Software Systems. IEEE Trans. Software Eng. 48, 12 (2022), 4857–4872.
[6] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. 1997. Efficient

Detection of Vacuity in ACTL Formulaas. In Computer Aided Verification, 9th
International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings
(Lecture Notes in Computer Science, Vol. 1254), Orna Grumberg (Ed.). Springer,

279–290.

[7] Clinton Cao, Agathe Blaise, Sicco Verwer, and Filippo Rebecchi. 2022. Learning

State Machines to Monitor and Detect Anomalies on a Kubernetes Cluster. CoRR
abs/2207.12087 (2022).

[8] William Chan. 2000. Temporal-Locig Queries. In Computer Aided Verification, 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings
(Lecture Notes in Computer Science, Vol. 1855), E. Allen Emerson and A. Prasad

Sistla (Eds.). Springer, 450–463.

[9] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and

Helmut Veith. 2018. Model checking, 2nd Edition. MIT Press.

[10] Colin De la Higuera. 2010. Grammatical inference: learning automata and gram-
mars. Cambridge University Press.

[11] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager. 2016. Combining

Model Learning and Model Checking to Analyze TCP Implementations. In Com-
puter Aided Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 9780), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, 454–471.

[12] Khouloud Gaaloul, Claudio Menghi, Shiva Nejati, Lionel C. Briand, and David

Wolfe. 2020. Mining assumptions for software components using machine learn-

ing. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann

(Eds.). ACM, 159–171.

[13] Bharat Garhewal and Carlos Diego Nascimento Damasceno. 2023. An Exper-

imental Evaluation of Conformance Testing Techniques in Active Automata

Learning. In 26th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS 2023, Västerås, Sweden, October 1-6, 2023. IEEE,
217–227.

[14] Antonio Cano Gómez. 2010. Inferring Regular Trace Languages from Positive and

Negative Samples. In Grammatical Inference: Theoretical Results and Applications,
10th International Colloquium, ICGI 2010, Valencia, Spain, September 13-16, 2010.
Proceedings (Lecture Notes in Computer Science, Vol. 6339), José M. Sempere and

Pedro García (Eds.). Springer, 11–23.

[15] Mathew Hall. 2011. Complexity Metrics for Hierarchical State Machines. In

Search Based Software Engineering - Third International Symposium, SSBSE 2011,
Szeged, Hungary, September 10-12, 2011. Proceedings (Lecture Notes in Computer
Science, Vol. 6956), Myra B. Cohen and Mel Ó Cinnéide (Eds.). Springer, 76–81.

[16] hping3 Authors. 2024. hping3 - Active Network Security Tool. https://www.

kali.org/tools/hping3/ Accessed: 2023-02-01.

[17] Baharin Aliashrafi Jodat, Abhishek Chandar, Shiva Nejati, and Mehrdad Sa-

betzadeh. 2023. Test Generation Strategies for Building Failure Models and

Explaining Spurious Failures. CoRR abs/2312.05631 (2023).

[18] BaharinAliashrafi Jodat, ShivaNejati, Mehrdad Sabetzadeh, and Patricio Saavedra.

2023. Learning Non-robustness using Simulation-based Testing: a Network

Traffic-shaping Case Study. In IEEE Conference on Software Testing, Verification
and Validation, ICST 2023, Dublin, Ireland, April 16-20, 2023. IEEE, 386–397.

[19] Christoph Molnar. 2020. Interpretable machine learning. Lulu. com.

[20] Edi Muskardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher, and Martin

Tappler. 2021. AALpy: An Active Automata Learning Library. In Automated
Technology for Verification and Analysis - 19th International Symposium, ATVA
2021, Gold Coast, QLD, Australia, October 18-22, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12971), Zhe Hou and Vijay Ganesh (Eds.). Springer, 67–73.

[21] Daniel Neider, Rick Smetsers, Frits W. Vaandrager, and Harco Kuppens. 2018.

Benchmarks for Automata Learning and Conformance Testing. In Models, Mind-
sets, Meta: The What, the How, and the Why Not? - Essays Dedicated to Bernhard
Steffen on the Occasion of His 60th Birthday (Lecture Notes in Computer Science,
Vol. 11200), Tiziana Margaria, Susanne Graf, and Kim G. Larsen (Eds.). Springer,

390–416.

[22] Oracle Corporation. 2024. Oracle VM VirtualBox. https://www.virtualbox.org/

[23] Andrea Pferscher and Bernhard K. Aichernig. 2021. Fingerprinting Bluetooth

Low Energy Devices via Active Automata Learning. In Formal Methods - 24th
International Symposium, FM 2021, Virtual Event, November 20-26, 2021, Proceed-
ings (Lecture Notes in Computer Science, Vol. 13047), Marieke Huisman, Corina S.

Pasareanu, and Naijun Zhan (Eds.). Springer, 524–542.

[24] Andrea Pferscher and Bernhard K. Aichernig. 2022. Fingerprinting and analysis

of Bluetooth devices with automata learning. Formal Methods Syst. Des. 61, 1
(2022), 35–62.

[25] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. IEEE Computer Society, 46–57.

[26] Rapid7. 2024. Metasploit Framework. https://www.metasploit.com/. Accessed:

2023-02-01.

[27] Amin Shahraki, Amir Taherkordi, and Øystein Haugen. 2021. TONTA: Trend-

based Online Network Traffic Analysis in ad-hoc IoT networks. Comput. Networks
194 (2021), 108125.

[28] Martin Tappler, Bernhard K Aichernig, and Roderick Bloem. 2017. Model-based

testing IoT communication via active automata learning. In 2017 IEEE Inter-
national conference on software testing, verification and validation (ICST). IEEE,
276–287.

[29] Cumhur Erkan Tuncali, Georgios Fainekos, Danil Prokhorov, Hisahiro Ito, and

James Kapinski. 2019. Requirements-driven test generation for autonomous

vehicles with machine learning components. IEEE Transactions on Intelligent
Vehicles 5, 2 (2019), 265–280.

[30] Frits W. Vaandrager. 2017. Model learning. Commun. ACM 60, 2 (2017), 86–95.

[31] Maonan Wang, Kangfeng Zheng, Yanqing Yang, and Xiujuan Wang. 2020. An

Explainable Machine Learning Framework for Intrusion Detection Systems. IEEE
Access 8 (2020), 73127–73141.

[32] Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011. Data mining: practical machine
learning tools and techniques, 3rd Edition. Morgan Kaufmann, Elsevier.

[33] Saman Taghavi Zargar, James Joshi, and David Tipper. 2013. A Survey of Defense

Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks.

IEEE Commun. Surv. Tutorials 15, 4 (2013), 2046–2069.

https://github.com/neayoughi/MELA.git
https://github.com/neayoughi/MELA.git
https://www.kali.org/tools/hping3/
https://www.kali.org/tools/hping3/
https://www.virtualbox.org/
https://www.metasploit.com/

	Abstract
	1 Introduction
	2 Intrusion Detection Case Study
	3 ML-Enhanced Automata Learning
	4 Evaluation
	4.1 Testbed Implmenetation
	4.2 RQ1: Complexity and Conformance
	4.3 RQ2: Verification
	4.4 Validity Considerations

	5 Related Work
	6 Lessons Learned and Future Work
	7 Data Availability
	References

